

Welcome to Smartparens’s documentation!

Contents:

	Automatic escaping
	Escaping with post hooks

	Escape action

Indices and tables

	Index

	Module Index

	Search Page

Automatic escaping

Smartparens can automatically escape quote characters (', ")
and the escape character \ (as determined by Emacs’s syntax
tables) when you wrap a region or insert them inside a string.

Autoescaping is specified on a per-pair basis. For convenience, there
are two global options to enable or disable escaping after wrapping
and after insertion of a pair.

	
User Option sp-escape-wrapped-region

	If non-nil, escape special chars inside the just wrapped region.

	
User Option sp-escape-quotes-after-insert

	If non-nil, escape string quotes if typed inside string.

Escaping with post hooks

To enable automatic escaping after wrapping or insertion it is
necessary to add post-handlers on the pairs where you want to trigger
the escaping. These are typically the " or ' quote pairs.
Escaping after wrapping is enabled by default.

The hooks are named after the global options—if the option is
disabled the function does nothing.

	
Function sp-escape-wrapped-region

	Escape quotes and special chars when a region is wrapped.

The wrapping is smart in the sense that it only escapes when
necessary. The behaviour of wrapping a word (bar) which is
already inside a string is summarized by the following table:

	enclosing \ wrapped
	‘
	“

	‘
	‘foo \’bar\’ baz’
	‘foo “bar” baz’

	“
	“foo ‘bar’ baz”
	“foo \”bar\” baz”

The behaviour of wrapping existing text (foo 'bar' baz or foo
"bar" baz) containing a string is summarized by the following table:

	containing \ wrapped
	‘
	“

	foo ‘bar’ baz
	‘foo \’bar\’ baz’
	“foo ‘bar’ baz”

	foo “bar” baz
	‘foo “bar” baz’
	“foo \”bar\” baz”

	
Function sp-escape-quotes-after-insert

	Escape quotes inserted via `sp-insert-pair’.

If auto-pairing is enabled and the pair was successfully inserted
inside a string, this hook ensures that it is escaped properly if
necessary. The same rules as for wrapping apply, that is, escaping
only takes place when necessary. This hook is triggered on the
'insert action, and so if a :when or :unless handler
prevents pairing, no action is taken.

Escape action

Some users prefer not to pair quotes inside strings and instead only
insert the single delimiter (this is the paredit behaviour). However,
if the user disabled auto-pairing inside strings, that means the
sp-escape-quotes-after-insert handler is never called and the
quote will get inserted unescaped.

This situation can be handled by adding an 'escape action on the
pair. That tells smartparens to still escape the single inserted
delimiter even if the insert action wasn’t performed.

Having a separate action might seem extraneous, but it gives us better
flexibility in defining the escaping rules to precisely match what is
expected. Also, by the nature of the post-handlers, which are only
run after the action is performed successfully, it is necessary to
have an action separate from 'insert which might get inhibited by
other predicates.

As usual, actions are tried in sequence: 'wrap, 'insert,
'escape, so if the pair is wrapped or inserted the escape action
is skipped (and the escaping can be handled with the handlers from
previous section).

The single-pair behaviour is summarized in the following table:

	enclosing \ inserted
	‘
	“

	‘foo | bar’
	‘foo \’| bar’
	‘foo “| bar’

	“foo | bar”
	“foo ‘| bar”
	“foo \”| bar”

Index

 E
 | S

E

 	
 	
 Emacs Lisp function

 	sp-escape-quotes-after-insert

 	sp-escape-wrapped-region

 	sp-pair

 	
 	
 Emacs Lisp macro

 	sp-with-modes

 	
 Emacs Lisp user option

 	sp-escape-quotes-after-insert

 	sp-escape-wrapped-region

S

 	
 	
 sp-escape-quotes-after-insert

 	Emacs Lisp function

 	Emacs Lisp user option

 	
 sp-escape-wrapped-region

 	Emacs Lisp function

 	Emacs Lisp user option

 	
 	
 sp-pair

 	Emacs Lisp function

 	
 sp-with-modes

 	Emacs Lisp macro

Pair management

Adding pairs

	
Function sp-pair open close

	

To define a new pair use the sp-pair function. Here is an example of the most basic use:

(sp-pair "\{" "\}") ;; latex literal brackets (included by default)
(sp-pair "<#" "#>")
(sp-pair "$" "$") ;; latex inline math mode. Pairs can have same opening and closing string

Pairs defined this way are by default used on all actions. However, you can disable certain pairs for auto insertion and only have them for wrapping, only use them for navigation or use any other combination of actions. This is achieved by setting the pair’s actions to allow or disable certain operations in certain contexts.

The sp-pair function accepts a family of keyword arguments which can further specify the behaviour. The keyword arguments can be arbitrarily combined in any order, the only requirement is that the first two positional arguments are always open and close for the pair.

	
(sp-pair :wrap binding)

	

You can add a binding for a “wrapping” action. Smartparens automatically binds a command that wraps the next expression with this pair to the supplied binding. The bound command accepts the same prefix arguments as sp-select-next-thing. In addition, if a region is already active, it wraps this region.

Note

This is useful in combination with evil visual selection mode, since with regular emacs, smartparens wraps the active regions automatically when you press the delimiter.

Warning

No syntax check is performed on the active region. This might change in the future.

To add the binding use the :wrap keyword:

(sp-pair "(" ")" :wrap "C-(")
;; |foobar
;; hit C-(
;; becomes (|foobar)

	
(sp-pair :insert binding :trigger trigger)

	

You can also add a binding for “insert” action. This is done the exact same way as for wrapping, but the keyword is :insert. Pressing this simply inserts the pair in the buffer. This is useful if you want to insert the pair with a modifier hotkey or a chord. To simply provide a shorter (expandable) trigger, you can specify a :trigger keyword.

(sp-local-pair 'LaTeX-mode "\\left(" "\\right)" :insert "C-b l" :trigger "\\l(")

This will make smartparens insert \left(|\right) when you type \l(or hit C-b l (where | is the point). Typing out the entire opening delimiter \left(will also work.

Note

Many such commands for LaTeX are provided in configuration file smartparens-latex.el. Check it out!

Note

You don’t have to use both :trigger and insert; one or the other (or both) are fine.

It is generally better to add these bindings only to certain major modes where you wish you use this functionality instead of binding them globally to avoid hotkey clashes. See the section about local pair definitions.

Removing pairs

You can remove pairs by calling sp-pair using the optional key argument :actions with value :rem. This will also automatically delete any assigned permissions! This command is mostly only useful for debugging or removing built-in pairs.

;; the second argument is the closing delimiter, so you need to skip it with nil
(sp-pair "\{" nil :actions :rem)
(sp-pair "'" nil :actions :rem)

Default pairs

Since some pairs are so common that virtually every user would use them, smartparens comes with a list of global default pairs. At the moment, this list includes:

("\\\\(" . "\\\\)") ;; emacs regexp parens
("\\{" . "\\}") ;; latex literal braces in math mode
("\\(" . "\\)") ;; capture parens in regexp in various languages
("\\\"" . "\\\"") ;; escaped quotes in strings
("\"" . "\"") ;; string double quotes
("'" . "'") ;; string single quotes/character quotes
("(" . ")") ;; parens (yay lisp)
("[" . "]") ;; brackets
("{" . "}") ;; braces (a.k.a. curly brackets)
("`" . "`") ;; latex strings. tap twice for latex double quotes

Local pair definitions

Sometimes, a globally defined pair is not appropriate for certain major modes. You can redefine globally defined pairs to have different definition in specific major modes. For example, globally defined pair `` is used in markdown-mode to insert inline code. However, emacs-lisp-mode uses `' for links in comments and in LaTeX-mode this pair is used for quotes. Since they share the opening sequence (the “trigger”), it’s impossible to have both defined globally at the same time. Therefore, it is desired to redefine this global pair to this new value locally.

That is accomplished by using sp-local-pair function:

(sp-local-pair 'emacs-lisp-mode "`" "'") ;; adds `' as a local pair in emacs-lisp-mode

If a global pair with the same trigger does not exist, the pair is defined locally and will only be used in the specified mode. Therefore, you do not need to define a pair globally and then overload it locally. The local definition is sufficient.

Instead of one mode, you can also specify a list to handle multiple modes at the same time (for example '(emacs-lisp-mode LaTeX-mode)).

Local pairs can be removed by calling sp-local-pair with optional keyword argument :actions with value :rem:

(sp-local-pair LaTeX-mode "`" nil :actions :rem)

Warning

This only removes the pairs you have previously added using sp-local-pair. It does not remove/disable a global pair in the specified mode. If you want to disable some pair in specific modes, set its permissions accordingly.

	
Macro sp-with-modes mode-or-modes &rest forms

	

When configuring a mode it is often the case that we modify multiple pairs at the same time. The macro sp-with-modes automatically supplies the mode-or-modes as first argument to all later forms (it can be a single symbol or a list of symbols for the multiple major modes).

(sp-with-modes 'emacs-lisp-mode
 ;; disable ', it's the quote character!
 (sp-local-pair "'" nil :actions nil)
 ;; also only use the pseudo-quote inside strings where it
 ;; serves as hyperlink.
 (sp-local-pair "`" "'" :when '(sp-in-string-p sp-in-comment-p)

 nav.xhtml

 Table of Contents

 		Welcome to Smartparens's documentation!

 		Automatic escaping

 		Escaping with post hooks

 		Escape action

_static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

_static/comment.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/comment-close.png

_static/up.png

_static/down-pressed.png

